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I. Introduction

THIS note touches a problem of developing generic mathematical software for object-oriented modeling and
simulation of complex dynamic systems. More specifically, it focuses on designing the C++ class templates

that could communicate with source classes comprising an object model and could process their data. This problem
is of great importance for models involving a large number of different classes (types) with complex data processing.
In many instances, aerospace applications fall under this category. For example, navigation, control, and stabilization
systems of an aircraft model require, beyond the continuous updating of the state variables, estimation and filtering of
noisy data from sensors, which, in turn, have to be simulated somehow. These specialized tasks could be effectively
solved by using corresponding class templates, or design patterns. C++ seems to be a language of choice for this
purpose because of its sound template support, as compared with such popular object-oriented languages as Java
and C#. The importance of the C++ generic programming attracts growing attention of software developers to this
theme.1 The C++ language includes the Standard Template Library (STL) that provides a great number of global
function templates, so-called generic algorithms, designed for processing collections of objects in containers of
different kinds. These algorithms implement such general purpose routines as sorting, searching, and merging. In
order to meet the needs of more complex algorithms for scientific computing in C++, a library of global functions
has been created for a great variety of numerical methods from linear algebra to partial differential equations (PDEs).2

Unfortunately, this vast library cannot be used in object models immediately, without extra programming efforts.
In the textbook3 the instance of a solver class template was described, which is intended for solving initial-value
problems (IVPs) for first-order ordinary differential equations (ODEs). The main feature of the solver is the usage of
function pointers to the source global functions describing the right-hand sides of ODEs. However, this solver pattern
cannot interact with classes of an object model through its inherent inability to access class members. Summing the
background of the problem, one can come to a conclusion that there is still no any adequate approach to designing
solvers for scientific computing to be embedded into an object model for processing the object data.

The objective of the current note is to show how to use available C++ facilities for creating design patterns for
solvers to be acting as equal parts of generic object models, thus to fill the gap. Such solvers must meet the following
general requirements:

– be designed as class templates rather than function templates to ensure that intermediate data are retained;
– provide access to public data of a source class;
– have a mechanism of returning the newly calculated data to the source class at each step of processing (e.g.,

integration of ODE), since such a functionality is essential in many simulation models.
The note exemplifies these requirements in designing templates for two kinds of ODE solvers intended for solving
both IVPs and two-point boundary-value problems (BVPs). The reason for the choice is that generic models including
dynamic objects described by ODEs are often used for pure computing or continuous simulation in research works
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and many applications ranging from aerospace systems and optimal control to game development. The basic idea is
the use of mechanism of pointers to member functions that allows design patterns to be effectively incorporated into
generic object models. In case of ODE solvers, member pointers provide access to source class member functions that
describe the right-hand sides of ODEs, have control over the integration process, and make specialized computations.

II. Design Pattern of the ODE Solver for IVP
From a variety of numerical methods for solving initial-value problems for systems of ODEs, the standard 4th order

fixed-step-sized Runge-Kutta method has been chosen. The declaration of the corresponding IVP solver template
involves, together with the customary private and public sections, a set of type definitions (typedef) for pointers
to source class member functions laying down minimum requirements on the public interface of a source class. Thus
proper matching is established between a solver and a source class. Pointers to member functions can be passed to a
solver template by two ways. The first way, which is adopted in the note, uses arguments of the solver constructor,
whereas another, less convenient scheme passes member pointers as template parameters. Now we can consider an
example of solver template declaration in detail:

template<typename DynamicSystem, int order>
class RungeKutta
{

typedef double (DynamicSystem::*PMemberFunc) (double* x);
typedef void (DynamicSystem::*PUpdate) (double* x);
typedef bool (DynamicSystem::*PCond) (int jc);

private:
DynamicSystem * pDS;
double h, x0[order+1], x[order+1];
double kx[order][4];
PMemberFunc pMF[order];
PUpdate pUpdate;
PCond pCond;

public:
RungeKutta(double h, DynamicSystem * pds, double* xi,

PMemberFunc* pmf, PUpdate pUp, PCond pCond);
double& GetX0(int i) { return x0[i]; }
void Run(int jc);

};

In its template part, it has a template argument, DynamicSystem, referring to a source class of an object-
oriented model that uses this solver. The non-template argument order indicates an order of ODEs system to be
integrated. The declaration starts with defining pointers to DynamicSystem’smember functions, thus displaying
required prototypes of the source class member functions. Here, PMemberFunc is declared as a pointer to a
member function representing the right-hand side of ODE, the member pointer PUpdate gives access to a member
function that updates state variables at each step, and, then the member pointer PCond is bound to the predicate that
provides the termination condition of integration process. The integer argument jc indexes the variable (dependent
or independent) used in the termination condition.

In the private section, the data members of the class template RungeKutta include the pointer pDS to the
corresponding source object with which the solver is to interact. The variable h is a step size of integration, and
the elements of arrays x0 and x are initial and current values of the independent variable (usually time) and state
variables of ODEs (e.g., distances, velocities, accelerations). The auxiliary array kx keeps temporary values used
in the 4th-order Runge-Kutta method. Pointers to the right-hand side DynamicSystem’s member functions are
represented as elements of the array pMF. The member pointers pUpdate and pCond of corresponding types are
also declared.
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In the public section, a parameterized constructor is declared that creates solver objects that match corresponding
model ones. The member function Run, being the core of the solver, integrates ODEs by the Runge-Kutta method
in point, starting from initial boundary values. At each step, the advanced values are returned to the source object by
calling the DynamicSystem’s helper function pointed to by the member pointer pUpdate. This helper function
could also make some control decisions concerning both the use of intermediate data and the process rate. Access to
the DynamicSystem’s member functions is provided by the operator −>∗ that binds corresponding pointers to
member functions with the source object pointed to by pDS. The integration process is going on in the while-loop
until the termination condition is valid, that is, the function call (pDS->*pCond) (jc) returns true.

III. Design Pattern of the ODE Solver for Two-Point BVP
An objective of this section is to show the structure of a solver template for a two-point BVP, taking as an example

the pure “shooting” method. A class template Shooting has been developed for this purpose. Specifically, this
pattern is intended for a simple free BVP defined as follows. For a system of ODEs of order n,

d �x
dt

= �f (t, �x),

where �x = (x1, . . . , xn)—n-vector of dependent (state) variables, �f = (f1, . . . , fn)—n-vector of nonlinear right-
hand side functions, there are specified:

1) n-1-vector of initial conditions �x(t = t0) = �x0,
2) two boundary conditions xi(t = tf ) = xif and xj (t = tf ) = xjf, i, j = 1, n, i �= j , at some unspecified final

point tf . After eliminating the time tf , we get one condition to be satisfied at the right end: xi(xj = xjf) = xif.
To solve the described BVP means to determine a freely specifiable initial value, say xk0, initially supposed to lie in

some interval [xk0 min, xk0 max]. This initial value xk0 may be found as a root of the nonlinear equation �xif(xk0) = 0,
where the discrepancy is �xif = xi(xj = xjf) − xif. The dependence �xif(xk0) cannot be expressed analytically in
the general case, but we can calculate it by repeatedly solving the IVP until xj = xjf. If �xif(xk0 min) and �xif(xk0 max)

have opposite signs, the iterative process of finding a root must converge. In the class Shooting, the false position
method is chosen for determining the root (see, for example,2, pp. 358–361).

The declaration of the class Shooting involves one template argument, namely, DynamicSystem, concerning
a source object of a model. It means that it is the source object that is responsible for providing the IVP solver to
be used in the “shooting” algorithm. Like the class RungeKutta, the class Shooting places some requirements
upon the interface of the class DynamicSystem, which have to contain two member functions with prototypes
being defined by pointers to member functions of types RunIVP and GetX. The first function pointed to by RunIVP
accomplishes the integration of IVP, taking three arguments—the indexk and initial valuexk0of the freely specifiable
state variable xk , as well as the index j of the state variable xj used in the second boundary (termination) condition.
The second function pointed to by GetX gets access to state variables used in the BVP solution. The declaration of
the class template Shooting is shown below:

template<typename DynamicSystem>
class Shooting
{

typedef void (DynamicSystem::*RunIVP)(int k, double xk0, int j);
typedef double& (DynamicSystem::*GetX)(int);

private:
double xmin, xmax, ymin, ymax;
int i, j, k;
double xf, error;
DynamicSystem* pDS;
RunIVP runIVP;
GetX getX;
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public:
Shooting(DynamicSystem * pds, double xmin, double xmax,

int i, int j, int k, double xf, double error,
RunIVP runIVP, GetX getX0)

void Run();
};

The data members xmin and xmax denote a range of varying the unspecified initial value of the state variable
xk . The data members ymin and ymax denote corresponding misses �xif. The integer data members i, j, and k
are indexes of the state variables xi , xj , and xk . The data member xf indicates the desired value xif at the final point
tf , and the data member error sets the admissible error �xiferr in determining the root xk0. All data members,
including pointers, are initialized in the parameterized constructor. The “shooting” algorithm is performed by the
member function Run using the false position method. The function Run calls the member function of a source class
(pDS->*runIVP)(k, x, j) to be making successive trial “shots” for finding discrepancies ymin and ymax.
The argument x is to be iteratively recalculated according to the formula

xn+1 = xn − yn · (xn − xn−1)/(yn − yn−1).

After the condition abs(y) < error has been satisfied, the approximate root value xk0 is passed to the source
object in the statement (pDS->*getX)(k) = x;.

IV. A Case Study: Using the BVP Solver in Trajectory Control for Re-Entry of a Space Vehicle
Aerospace systems are based on laws of mechanics and therefore provide a variety of guidance and control

problems convenient for testing BVP solvers–from spacecraft rendezvous to soft landing on planets. Here, it is
considered an example related to trajectory control for a re-entry vehicle. This problem has been investigated over
the past 45 years (see, e.g.,4). The two-dimensional model of center-of-mass motion of an unpowered low-lift re-entry
vehicle in the stationary atmosphere of a non-rotating spherical Earth is described by the following ODEs system of
the 4th order:

•
V = −κ · ρ(y) · V 2 − g(y) · sin γ

•
γ = κ · u · ρ(y) · V − [g(y)/V − V/(Re + y)] · cos γ

•
y = V · sin γ

•
x = [Re/(Re + y)] · V · cos γ

(1)

where overdot indicates differentiation with respect to time t , V —velocity, γ —flight-path angle, y—altitude,
x—range, κ—ballistic coefficient, u—lift-to-drag ratio,

g(y) = g0 · [Re/(Re + y)]2 (2)

is acceleration of gravity, g0 = 9.81 m/sec2 is acceleration of gravity at sea level, Re = 6371 km is the Earth’s radius,

ρ(y) = ρ0 · e−β·y (3)

is the atmospheric density if an isothermal atmosphere is assumed, ρ0 = 1.225 kg/m3 is the atmospheric density at
sea level, β = 0.00014 m−1 is the logarithmic gradient of density.

We will consider the two-point BVP of determining the flight-path angle γ (t0) = γ0 at entry point under specified
boundary conditions. The initial conditions of the BVP includes initial velocity at entry point V (t = t0) = V0,
altitude y(t = t0) = y0, and range x(t = t0) = x0. The second boundary (terminal) conditions are x(t = tf ) = xf

and y(t = tf ) = yf , or, having eliminated tf , x(y = yf ) = xf . Such a problem can be effectively solved by the
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Fig. 1 Class diagram of the simulation model of atmospheric re-entry.

developed design patterns Shooting and RungeKutta. The class diagram for the simulation model involving
both the solvers and the source class Reentry is depicted in Fig. 1.

The declaration of the class Reentry (with some functions defined inline) is presented below:

class Reentry
{

typedef double (Reentry::*F)(double* var);
private:

enum {SIZE = 5, ORDER = SIZE-1};
Shooting<Reentry>* pSh;
RungeKutta<Reentry, ORDER>* pRK;
const double PI, G0, RE, dens0, beta;
double ht, kappa, u;
double var[SIZE]; //variables t, v, gamma, y, x;
double varf[SIZE]; //values of variables at the final point
double Dens(double y);
double G(double y);
double FV(double* var);
double FGamma(double* var);
double FY(double* var);
double FX(double* var);
F f[SIZE-1];
void RunRK(int k, double xk, int j) { pRK-> GetX0(k) = xk;

pRK-> Run(j); }
void Print();

public:
const double D_R; //conversion from degrees to radians
Reentry(double gamma0, double v0, double y0, double x0, int ivarf,

double varfp, double ht, double t0 = 0);
∼Reentry();
F* GetF() { return f; }
void Exchange(double* varp);
bool Stop(int j) { return var[j] < varf[j]; }
double& GetVar(int i) { return var[i]; }
double* GetVar() { return var; }
void RunShooting(double varMin, double varMax, int i, intj, int k,

double varf, double miss);
//part of interface containing access functions GetT, GetV, etc.
...

};
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Fig. 2 Initial and final trial trajectories in atmospheric re-entry guidance.

The class contains pointers pRK and pSh to classes RungeKutta and Shooting correspondingly, which are
bound to objects created dynamically in the constructor:

pRK = new RungeKutta <Reentry, ORDER> (ht, this, var, f, Exchange, Stop);

as well as in the member function RunShooting:

pSh = new Shooting <Reentry> (this, gammaMin*D_R, gammaMax*D_R, i, j, k,
varf, miss, RunRK, GetVar);

The member functions FV, FGamma, FY, and FX compute right-hand sides of the set of ODEs (1). The helper
functions G and Dense compute the acceleration of gravity and the atmospheric density on formulas (2) and (3),
correspondingly.

A numerical example aimed to determine the initial flight-path angle when re-entry is illustrated in Fig. 2, where
the trial trajectories 1, 2, and 3 relate to γ0 = γ0 min, γ0 = γ0 max, and required γ0 = γ0f , correspondingly. Data
used in the test are as follows: κ = 0.001 m2/kg, u = 0.2, V0 = 7800 m/sec, y0 = 80 km, x0 = 0 m, γ0 min = −1◦,
γ0 max = −3◦, yf = 10 km, xf = 2000 km, admissible range miss �xf = 10 km. The driver function main has the
following view:

int main()
{

Reentry rv(-2, 7800., 80e3, 0., 3., 10e3, 1.);
rv.RunShooting(-1.0, -3.0, 4, 3, 2, 2000e3, 500.0);
return 0;

}

The sought-for initial flight-path angle γ0f = −1.522◦ has been found after 5 iterations with the miss ∼5 km.

V. Conclusions
The class templates presented in the note may be considered as the first ODEs IVP and BVP solvers to be

completely incorporated in diverse generic object-oriented computing and simulation models written in C++. Usage
of the mechanism of pointers to member functions gives the solvers a capability to communicate effectively with
dynamic objects forming a model. The design patterns may serve as examples for developing great families of
object-oriented solvers using other algorithms and applicable not only to ODEs but also to PDEs, linear algebraic
equations, optimization, and many other fields of numeric computing. Their usage would be especially convenient in
the aerospace simulation models which are frequently populated with numerous dynamic objects involving optimal
control, navigation, and decision-making systems.
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